additive maps on c$^*$-algebras commuting with $|.|^k$ on normal elements

Authors

y. guan

c. wang

j. hou

abstract

let $mathcal {a} $ and $mathcal {b} $ be c$^*$-algebras. assume that $mathcal {a}$ is of real rank zero and unital with unit $i$ and $k>0$ is a real number. it is shown that if $phi:mathcal{a} tomathcal{b}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $phi(|a|^k)=|phi(a)|^k $ for all normal elements $ainmathcal a$, $phi(i)$ is a projection, and there exists a positive number $c$ such that $phi(ii)phi(ii)^{*}leq cphi(i)phi(i)^{*}$, then $phi$ is the sum of a linear jordan *-homomorphism and a conjugate-linear jordan *-homomorphism. if, moreover, the map $phi$ commutes with $|.|^k$ on $mathcal{a}$, then $phi$ is the sum of a linear *-homomorphism and a conjugate-linear *-homomorphism. in the case when $k not=1$, the assumption $phi(i)$ being a projection can be deleted.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Additive maps on C$^*$-algebras commuting with $|.|^k$ on normal elements

Let $mathcal {A} $ and $mathcal {B} $ be C$^*$-algebras. Assume that $mathcal {A}$ is of real rank zero and unital with unit $I$ and $k>0$ is a real number. It is shown that if $Phi:mathcal{A} tomathcal{B}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $Phi(|A|^k)=|Phi(A)|^k $ for all normal elements $Ainmathcal A$, $Phi(I)$ is a projection, and there exists a posit...

full text

A Note on Spectrum Preserving Additive Maps on C*-Algebras

Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.

full text

On Preserving Properties of Linear Maps on $C^{*}$-algebras

Let $A$ and $B$ be two unital $C^{*}$-algebras and $varphi:A rightarrow B$ be a linear map. In this paper, we investigate the structure of linear maps between two $C^{*}$-algebras that preserve a certain property or relation. In particular, we show that if $varphi$ is unital, $B$ is commutative and $V(varphi(a)^{*}varphi(b))subseteq V(a^{*}b)$ for all $a,bin A$, then $varphi$ is a $*$-homomorph...

full text

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Orthogonally Additive Polynomials on C*-algebras

Let A be a C*-algebra which has no quotient isomorphic to M2(C). We show that for every orthogonally additive scalar nhomogeneous polynomials P on A such that P is Strong* continuous on the closed unit ball of A, there exists φ in A∗ satisfying that P (x) = φ(x), for each element x in A. The vector valued analogue follows as a corollary.

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 41

issue Issue 7 (Special Issue) 2015

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023